Losing fertile matter to sea: How landscape entropy affects climate
Abstract: Under natural conditions order is created by interactions between water, temperature, chemical gradients, ground surface, and organisms. However, in the ‘developed’ landscape, order is replaced by randomness. The de-coupling of energy and water cycles is observed in eutrophication, as irreversible matter losses break closed metabolic cycles in coenotic structures. Another cause of landscape entropy is the lowered water table, which decreases surface flows. Applying the Energy-Transport-Reaction Model to the River Stor Catchment in Germany, the paper shows how dissipative structures balance terrestrial and aquatic ecosystems, returning short water cycles to the atmosphere. This ecosystem integrity benefits food production as well as climate.